We are a leading healthcare campus encompassing all fields of health: from healthcare and research to teaching and management.
Professionalism, commitment and research by professionals on the Campus are the key elements in offering patients excellent care.
We are committed to research as a tool to provide solutions to the daily challenges we face in the field of medical healthcare.
Thanks to our healthcare, teaching and research potential, we work to incorporate new knowledge to generate value for patients, professionals and the organization itself.
We generate, transform and transmit knowledge in all areas of the health sciences, helping to train the professionals of the future.
We are defined by our vocation for communication. We invite you to share everything that happens at Vall d'Hebron Barcelona Hospital Campus, and our doors are always open.
Hospital donations
Research donations
Dr. Manuel Valiente, Head of the Brain Metastasis Group at the Spanish National Cancer Research Centre (CNIO)
"Reprogramming the brain microenvironment is a key step for organ colonization"
Metastasis is the most frequent tumor affecting the brain and an unmet clinical need. Chemotherapies, targeted therapies and immunotherapies have a limited impact on the progression of the disease in most patients and local therapies (neurosurgery and radiation) are usually provided with palliative purposes. The growth of metastatic cells in the brain modify the local environment. We hypothesized that identification of metastases-associated molecular alterations in the microenvironment might uncover important aspects of the biology of colonization and lead to novel therapeutic opportunities to benefit a higher number of patients.STAT3 activation labels a subpopulation of reactive astrocytes (pSTAT3+ RA) in seven experimental brain metastasis models and 89% of human brain metastases from different primary tumors. Genetic and pharmacologic targeting of STAT3 impairs the viability of brain metastasis even at advanced stages of colonization. pSTAT3+ RA are functionally different from other reactive astrocytes since they acquire stem-cell like properties and are able to negatively influence adaptive immunity and promote pro-tumor macrophages/microglia. The use of a blood-brain barrier permeable, non-toxic and orally bioavailable STAT3 inhibitor reduces brain metastases in experimental models and lung adenocarcinoma patients.I will provide a proof-of-concept for the development of therapies targeting reprogrammed cells from the microenvironment induced by the sustained presence of cancer cells in the brain. This finding applies to experimental and human brain metastases from breast cancer, lung cancer and melanoma suggesting that brain-specific therapies could be combined with others to improve the poor outcome of these patients.
Host: Translational Molecular Pathology, stefan.hummer@vhir.org
The acceptance of these terms implies that you give your consent to the processing of your personal data for the provision of the services you request through this portal and, if applicable, to carry out the necessary procedures with the administrations or public entities involved in the processing. You may exercise the mentioned rights by writing to web@vallhebron.cat, clearly indicating in the subject line “Exercise of LOPD rights”. Responsible entity: Vall d’Hebron University Hospital (Catalan Institute of Health). Purpose: Subscription to the Vall d’Hebron Barcelona Hospital Campus newsletter, where you will receive news, activities, and relevant information. Legal basis: Consent of the data subject. Data sharing: If applicable, with VHIR. No other data transfers are foreseen. No international transfer of personal data is foreseen. Rights: Access, rectification, deletion, and data portability, as well as restriction and objection to its processing. The user may revoke their consent at any time. Source: The data subject. Additional information: Additional information can be found at https://hospital.vallhebron.com/es/politica-de-proteccion-de-datos.